3.665 \(\int \frac{(c+d \sin (e+f x))^n}{\sqrt{a+a \sin (e+f x)}} \, dx\)

Optimal. Leaf size=99 \[ -\frac{\cos (e+f x) (c+d \sin (e+f x))^n \left (\frac{c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac{1}{2};-n,1;\frac{3}{2};\frac{d (1-\sin (e+f x))}{c+d},\frac{1}{2} (1-\sin (e+f x))\right )}{f \sqrt{a \sin (e+f x)+a}} \]

[Out]

-((AppellF1[1/2, -n, 1, 3/2, (d*(1 - Sin[e + f*x]))/(c + d), (1 - Sin[e + f*x])/2]*Cos[e + f*x]*(c + d*Sin[e +
 f*x])^n)/(f*Sqrt[a + a*Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n))

________________________________________________________________________________________

Rubi [A]  time = 0.168786, antiderivative size = 129, normalized size of antiderivative = 1.3, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2788, 137, 136} \[ -\frac{\cos (e+f x) \sqrt{\frac{d (1-\sin (e+f x))}{c+d}} (c+d \sin (e+f x))^{n+1} F_1\left (n+1;\frac{1}{2},1;n+2;\frac{c+d \sin (e+f x)}{c+d},\frac{c+d \sin (e+f x)}{c-d}\right )}{f (n+1) (c-d) (1-\sin (e+f x)) \sqrt{a \sin (e+f x)+a}} \]

Warning: Unable to verify antiderivative.

[In]

Int[(c + d*Sin[e + f*x])^n/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((AppellF1[1 + n, 1/2, 1, 2 + n, (c + d*Sin[e + f*x])/(c + d), (c + d*Sin[e + f*x])/(c - d)]*Cos[e + f*x]*Sqr
t[(d*(1 - Sin[e + f*x]))/(c + d)]*(c + d*Sin[e + f*x])^(1 + n))/((c - d)*f*(1 + n)*(1 - Sin[e + f*x])*Sqrt[a +
 a*Sin[e + f*x]]))

Rule 2788

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dis
t[(a^2*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
+ d*x)^n)/Sqrt[a - b*x], x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !IntegerQ[m]

Rule 137

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*((b*c)/(b*c
- a*d) + (b*d*x)/(b*c - a*d))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&
 !IntegerQ[n] && IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x]

Rule 136

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*e - a*
f)^p*(a + b*x)^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f
))])/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rubi steps

\begin{align*} \int \frac{(c+d \sin (e+f x))^n}{\sqrt{a+a \sin (e+f x)}} \, dx &=\frac{\left (a^2 \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(c+d x)^n}{\sqrt{a-a x} (a+a x)} \, dx,x,\sin (e+f x)\right )}{f \sqrt{a-a \sin (e+f x)} \sqrt{a+a \sin (e+f x)}}\\ &=\frac{\left (a^2 \cos (e+f x) \sqrt{\frac{d (a-a \sin (e+f x))}{a c+a d}}\right ) \operatorname{Subst}\left (\int \frac{(c+d x)^n}{(a+a x) \sqrt{\frac{a d}{a c+a d}-\frac{a d x}{a c+a d}}} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x)) \sqrt{a+a \sin (e+f x)}}\\ &=-\frac{F_1\left (1+n;\frac{1}{2},1;2+n;\frac{c+d \sin (e+f x)}{c+d},\frac{c+d \sin (e+f x)}{c-d}\right ) \cos (e+f x) \sqrt{\frac{d (1-\sin (e+f x))}{c+d}} (c+d \sin (e+f x))^{1+n}}{(c-d) f (1+n) (1-\sin (e+f x)) \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [B]  time = 2.90812, size = 236, normalized size = 2.38 \[ \frac{\cos (e+f x) \sqrt{a (\sin (e+f x)+1)} (c+d \sin (e+f x))^n \left (\frac{4 \sqrt{\frac{\sin (e+f x)-1}{\sin (e+f x)+1}} \left (\frac{c-d}{d \sin (e+f x)+d}+1\right )^{-n} F_1\left (-n-\frac{1}{2};-\frac{1}{2},-n;\frac{1}{2}-n;\frac{2}{\sin (e+f x)+1},\frac{d-c}{\sin (e+f x) d+d}\right )}{2 n+1}-\sqrt{2-2 \sin (e+f x)} \left (\frac{c+d \sin (e+f x)}{c-d}\right )^{-n} F_1\left (1;\frac{1}{2},-n;2;\frac{1}{2} (\sin (e+f x)+1),\frac{d (\sin (e+f x)+1)}{d-c}\right )\right )}{4 a f (\sin (e+f x)-1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c + d*Sin[e + f*x])^n/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*(c + d*Sin[e + f*x])^n*(-((AppellF1[1, 1/2, -n, 2, (1 + Sin[e + f*x])
/2, (d*(1 + Sin[e + f*x]))/(-c + d)]*Sqrt[2 - 2*Sin[e + f*x]])/((c + d*Sin[e + f*x])/(c - d))^n) + (4*AppellF1
[-1/2 - n, -1/2, -n, 1/2 - n, 2/(1 + Sin[e + f*x]), (-c + d)/(d + d*Sin[e + f*x])]*Sqrt[(-1 + Sin[e + f*x])/(1
 + Sin[e + f*x])])/((1 + 2*n)*(1 + (c - d)/(d + d*Sin[e + f*x]))^n)))/(4*a*f*(-1 + Sin[e + f*x]))

________________________________________________________________________________________

Maple [F]  time = 0.16, size = 0, normalized size = 0. \begin{align*} \int{ \left ( c+d\sin \left ( fx+e \right ) \right ) ^{n}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x)

[Out]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt{a \sin \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt{a \sin \left (f x + e\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d \sin{\left (e + f x \right )}\right )^{n}}{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))**n/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral((c + d*sin(e + f*x))**n/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt{a \sin \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)